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Chapter 1

Introduction

1.1 Component–Based Software Engineering

Software components are executable units of independent production, acquisition,
and deployment that can be composed into a functioning system. Components are
for composition. Composition enables prefabricated components to be reused by
rearranging them in new composites. Traditional software development can broadly
be devided into two approaches:

• At one extreme, a project is developed entirely from scratch, with the help of
only programming tools and libraries.

• At the other extreme, everything is build of standard software which is bought
and parametrized to provide a solution that is close enough to what is needed.

The concept of component software represents a middle path that could solve this
problem. Although each bought component is a standardized product, the pro-
cess of component assembly allows the opportunity for significant customization.
Component–Based Software Engineering (CBSE) [12, 1, 2] has become recognized
as a new subdiscipline of software engineering. The major goals of CBSE are:

• To provide support for development of software systems as assemblies of com-
ponents.

• To support development of software components as reusable entities.

• To facilitate the maintenance and upgrade of systems by customizing and
replacing their components.

Software components were initially considered to be analogous to hardware compo-
nents in general and to integrated circuits (IC) in particular. But software technol-
ogy is an engineering discipline in its own right, with its own principles and laws.
Therefore, such analogies break down quickly when going into technical details.

3
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1.2 Software component definition

Software components are the main part in CBSE. Therefore, we need a precise defi-
nition of this term. Unfortunately, there are several different component definitions
in literature. A major problem is the multiple overloading of the term Component
in the software world.

1.2.1 Syntactic specification of software components

Clemens Szyperski [12] defines a component by enumerating the characteristic prop-
erties of a software component:

Definition (Szyperski) A software component is a unit of composition with con-
tractually specified interfaces and explicit context dependencies only. A soft-
ware component can be deployed independently and is subject to composition
by third party.

<<uses>>

<<provides>>

<<provides>>

<<provides>>

<<uses>>
<<uses>>

Component

Component

Component

Interface

Interface

Interface

Component Environment

Figure 1.1: A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only.

This component definition contains important terms which must be discussed in
detail [13]:

• A unit of composition: The purpose of components is to be composed with
other components. A component–based application is thus assembled from a
set of collaborating components.

• Contractually specified interfaces: To be able to compose components
into applications, each component must provide one or more interfaces. These
interfaces form a contract between the component and its environment. The
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interface clearly defines which services the component provides - it defines its
responsibilities.

• Explicite context dependencies only: Software usually depends on a spe-
cific context, such as the availability of database connections or other system
resources. One particularly interesting context is the set of other components
that must be available for a specific component to collaborate with. To sup-
port the composability of components, such dependencies must be explicitly
specified.

• Can be deployed independently: A component is self–contained. Changes
to the implementation of a component do not require changes to other com-
ponents, as long as the interface remains compatible.

• Third parties: The engineers who assemble applications from components
are not necessarily the same as those who created the components. Compo-
nents are intended to be reused - the goal is a kind of component marketplace
in which people buy components and use them to compose their own applica-
tions.

Szyperski’s definition does not have satisfactory support for specification of non-
functional properties. The following definition, introduced by Ivica Crnkovic [1],
summarize the common aspects of component definitions, including nonfunctional
features, found in literature:

Definition (Crnkovic) : To be able to describe a component completely and to en-
sure its correct integration, maintenance and updating, the component should
consist of the following elements:

• A set of interfaces provided to, or required from, the environment. These
interfaces are particularly for interaction with other components, rather
than with a component infrastructure or traditional software entities.

• An executable code, which can be coupled to the code of other compo-
nents via interfaces.

To improve the component quality, the following elements can be included in
the specification of a component:

• The specification of nonfunctional characteristics, which are provided and
required.

• The validation code, which confirms a proposed connection to another
component.

• Additional information, which includes documents related to the fulfilling
of specification requirements, design information, and use cases.
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A difficulty in CBSE is deciding how to deal with nonfunctional aspects of com-
munication, cooperation, and coordination included in a component architecture.
These nonfunctional properties should be possible to compose and easy to control.
A clear separation of nonfunctional requirements gives a component more context
independence.

1.2.2 Semantic specification of software components

Most techniques for describing interfaces are only concerned with the signature part,
in which the operations provided by a component’s interface are described, and thus
fail to address the overall behavior of the component. Ivica Crnkovic describes five
levels of formalism for such semantic specification:

• No semantics: The focus is exclusively on the syntactic parts of the inter-
faces, represented by interface description or programming languages.

• Intuitive semantics: Here we use plain text, unstructured descriptions and
comments about a component and its parts.

• Structured semantics: The semantics are presented in a structured way but
need not be in accordance with any particular syntax or formalism.

• Executable semantics: The semantic aspects are expressed in a way that
can be executed and verified by the system during run time (assertions can be
used to express preconditions and postconditions and to test them during run
time). Note that client code may also take advantage of executable assertions
by checking the pre- and postconditions of an operation call.

• Formal semantics: Programs can be proved to have consistent and sound
semantics. Formal specification languages such as VDM and Z are examples
of approaches on this level [10].

Specifications that include syntactic and semantic information are often called Con-
tracts. As mentioned by Meyer [4], a contract lists the global constraints that the
component will maintain (the invariant). For each operation within the component,
a contract also lists the constraints that need to be met by the client (the precondi-
tion) and those the component promises to establish in return (the postcondition).

1.2.3 Objects versus components

The term Object and Component are often thought to be very similar, but there are
significant differences:

• Granularity. In contrast to a programming language object, a component has
a much larger granularity and therefore usually more responsibilities. Compo-
nents were introduced to group objects to larger entities to reduce the overall
complexity of a software system.
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• Multiple interfaces per component. An object typically implements a
single class interface, which may be related to other classes by inheritance.
In contrast, a component can implement many interfaces, which need not
be related by inheritance. Components can provide navigation operations to
move between different component interfaces. Navigation in objects is limited
to moving up or down an inheritance tree via cast or narrow operations.

• Extensibility. While objects are implemented in a particular programming
language, components are not restricted in that way. Components can be
viewed as providers of functionality that can be replaced with equivalent com-
ponents written in any programming language. This extensibility is facilitated
via the Extension Interface design pattern [9], which defines a standard pro-
tocol for creating, composing, and evolving groups of interacting components.

• Improved communication. Components have a more extensive set of inter-
communication mechanisms (synchronous/asynchronous, local/remote, mes-
sages/methods) than objects.

• Higher–level execution environment. Component models define a run-
time execution environment, called component container, that operates at a
higher level of abstraction than access via ordinary objects. The container
provides additional levels of control for defining and enforcing policies on com-
ponents at runtime.

1.2.4 A taxonomy of components

Because of its generic definition, the term component is used to describe rather
different software concepts. The component taxonomy shown in Fig. 1.2 should
help to structure the diffent concepts in context of software components.

GUI Components Server Components

Components

Logical ComponentsTechnical Components

ActiveX JavaBeans COM+ EJB CCM

DLL Subsystem

Figure 1.2: A taxonomy of components.
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• Logical Components: A logical component is simply a package of related
functionality. In can be some kind of Subsystem, a DLL or a complete,
standalone application that runs as part of a larger system. Logical compo-
nents are mainly a way to keep the complexity of a system under control, and
to organize version control or project management issues. There is also the
notation of a Business Component [3] - an aggregation of data, domain and
user components that embody a complete subsystem.

• Technical Components: These are technical building blocks to asembly ap-
plications. A technical component can not run without a runtime environment
called container. A container handles the technical concerns like transactions,
security, failover or load–balancing for the components. Technical components
are either used in client applications or on the server.

– Client components: the container for client components is typically
an IDE where the components are configured at development time. The
most popular examples are ActiveX Controls and JavaBeans

– Server components: usually encapsulate business logic in multi–tier
systems and the container is typically a part of an application server.
There are three mainstream component technologies: COM+, Enter-
prise JavaBeans (EJB) and CORBA Component Model (CCM).
These server components are never used as client components, because
the containers are rather complex and not available at the client side.



Chapter 2

Hello World Example

As a quick tour through CCM Tools, we implement a simple Hello World component
example. Each development step and developer role will be described in more detail
in one of the next sections, here we give a general overview.

Step 1: We define a component using the Interface Definition Language (IDL). This
simple component only provides a single interface containing a single method. Don’t
forget to define a home for this component type. The following IDL definitions are
stored in a file called Hello.idl:

module world
{

interface Hello
{

string sayHello();
};

component Server
{

provides Hello hello;
};

home ServerHome manages Server
{
};

};

Step 2: Generate a uniform IDL3 structure from the single Hello.idl file:

> ccmidl -idl3 -o server/idl idl3/Hello.idl

This uniform IDL3 structure separates between interfaces (including parameter type
and exception definitions) and components (including their homes). Such a separa-
tion makes sense because an interface can be used by many component definitions.

9
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server/
|-- idl
| |-- component
| | ‘-- world
| | |-- Server.idl
| | ‘-- ServerHome.idl
| ‘-- interface
| ‘-- world
| ‘-- Hello.idl

Step 3: Generate an empty component skeleton from the uniform IDL3 structure:

> ccmtools c++local -o server/interface \
-Iserver/idl/interface \
-Iserver/idl/component \
server/idl/interface/world/*.idl

> ccmtools c++local -a -o server/component/Server \
-Iserver/idl/interface \
-Iserver/idl/component \
server/idl/component/world/Server*.idl

CCM Tools generate the following file structure which represents a local component’s
implementation. Code contained in the GEN * directories establishes the compo-
nent’s structure (= component logic), while code stored in the Server directory
represents the functional part of a component (= business logic).

server
|-- idl
|-- component
| ‘-- Server
| |-- GEN_ccmtools_local_world
| |-- GEN_ccmtools_local_world_share
| |-- ServerHome_impl.cc
| |-- ServerHome_impl.h
| |-- Server_hello_impl.cc
| |-- Server_hello_impl.h
| |-- Server_impl.cc
| |-- Server_impl.h
| ‘-- world_ServerHome_entry.h
‘-- interface

|-- GEN_ccmtools_local_world
‘-- GEN_world

Step 4: Implement the component’s business logic. The component’s business logic
must be embedded in the generated component logic. To implement the sayHello()
method of the Hello interface, we extend the generated Server hello impl.cc file:
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std::string
Server_hello_impl::sayHello()

throw(Components::CCMException)
{

// TODO : IMPLEMENT ME HERE !
return "Hello from Server component!";

}

Step 5: Now we can implement a client that uses the Hello World component. For
this simple case, we implement the client as a check* file that will be automatically
executed from a make check command.

server/component/server
|-- test
| ‘-- _check_world_Server.cc

The following client code snippets are stored in the check world Server.cc file:

#include <cassert>
#include <iostream>

#include <Components/ccmtools.h>
#include <world/ServerHome_gen.h>

using namespace std;
using namespace world;

int main(int argc, char *argv[])
{

int error = deploy_world_ServerHome("ServerHome");
if(error)
{

cerr << "BOOTSTRAP ERROR: Can’t deploy component homes!" << endl;
return(error);

}

try
{

Components::HomeFinder* homeFinder =
Components::HomeFinder::Instance();

ServerHome::SmartPtr home(dynamic_cast<ServerHome*>(
homeFinder->find_home_by_name("ServerHome").ptr()));

Server::SmartPtr component;
Hello::SmartPtr hello;
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component = home->create();
hello = component->provide_hello();
component->configuration_complete();

string s = hello->sayHello();
cout << "sayHello(): " << s << endl;

assert(s == "Hello from Server component!");

component->remove();
}
catch(Components::Exception& e)
{

cerr << "CCMTOOLS ERROR: " << e.what() << endl;
return -1;

}
catch(...)
{

cerr << "UNKNOWN ERROR!" << endl;
return -1;

}

error = undeploy_world_ServerHome("ServerHome");
if(error)
{

cerr << "TEARDOWN ERROR: Can’t undeploy component homes!" << endl;
return error;

}

Components::HomeFinder::destroy();
}

Additionally, we create some marker files which tell confix which package name,
version and subdirectories should be used.

> ccmconfix -confix2 -o server -pname "hello_world" -pversion "1.0.0"

To compile the component and run the unit test, simply type:

> confix2.py --packageroot=‘pwd‘/server --bootstrap --configure \
--make --targets=check

After all, we are happy to see the following output at the end of the client’s build
process:

sayHello(): Hello from Server component!
PASS: hello_world_component_Server_test__check_world_Server
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==================
All 1 tests passed
==================

Of course, to implement a component for a simple ’Hello from Server component!’
message is somewhat academical, but this example shows how simple a component
development cycle can be. The intent of this section was to define the main activities
in component development, which are:

• Define a component’s structure using IDL.

• Generate an empty component skeleton (called component logic).

• Implement a component’s business logic.

• Implement a component’s (test) client.

In the following sections, we will explore each of these steps in more detail. However,
keep this big picture in mind.
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Chapter 3

Interface Definition Language

3.1 Introduction

In the CCM Tools framework, a subset of OMG’s Interface Definition Language
(IDL3) is used to define components, interfaces and parameters, as shown in Fig. 3.1.

Figure 3.1: CCM Tools support a subset of OMG’s Interface Definition Language.

Using an explicit IDL, we can define the structure of component–based software
systems completely independent of any particular programming language (e.g. C++
or Java). Also, a clear separation between system design and implementation is
guaranteed.

15
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3.2 Source Files

The IDL specification defines a number of rules for the naming and contents of IDL
source files.

3.2.1 File Naming

The names of source files containing IDL definitions must end in .idl (for example,
we can define a file named ccmtools.idl).

3.2.2 File Format

IDL is a free–form language. This means that IDL allows free use of spaces and
newline characters. Layout and indentation do not carry semantics, so you can
choose any textual style you prefer, but keep in mind that IDL is programming
language independent so don’t use language specific prefixes or names.

3.2.3 Preprocessing

IDL source files are preprocessed. The preprocessor’s behavior is identical to the
C++ preprocessor (actually, the CCM Tools use the GNU C preprocessor cpp).
The most common use of the preprocessor is for #include directives. This permits
an IDL definition to use types defined in a different source file. You may also want
to use the preprocessor to guard against double inclusion of a file:

#ifndef _MYFILENAME_IDL_

#define _MYFILENAME_IDL_

// some IDL definitions

#endif /* _MYFILENAME_IDL_ */

3.2.4 Definition Order

IDL constructs (modules, interfaces, type definitions) can appear in any order you
prefer. However, identifiers must be declared before they can be use.

3.2.5 Comments

IDL definitions permit both the C and the C++ style of writing comments:

/**

* This is a legal IDL comment.

* Note that you can use tools like doxygen to extract
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* comments from IDL files.

*/

// This comment extends to the end of this line.

3.2.6 Keywords

IDL uses a number of keywords, which must be spelled in lowercase (e.g. interface,
struct, etc.). There are three exceptions to this lowercase rule: Object, TRUE and
FALSE are all keywords and must be capitalized.

3.2.7 Identifiers

Identifiers begin with an alphabetic character followed by any number of alphabetics,
digits, or underscores. Unlike C++ identifiers, IDL identifiers can’t have a leading
underscore.

Identifiers are case–insensitive but must be capitalized consistently. This rule exists
to permit mappings of IDL to languages that ignore case in identifiers (e.g. Pascal)
as well as to languages that treat differently capitalized identifiers as distinct (e.g.
C++, Java).

IDL permits you to create identifiers that happen to be keywords in one or more
implementation languages, but to make life easier, you should try to avoid IDL
identifiers that are likely to be implementation language keywords.

3.3 Modules

IDL uses the module construct to create namespaces. Modules combine related defi-
nitions into a logical group and prevent pollution of the global namespace. Identifiers
in a module need be unique only within that module. The IDL parser searches for
the definition of an identifier from the innermost scope outward toward the outer-
most scope.

Example:

module world

{

/** Some IDL definitions */

};

In addition, modules can contain other modules, so you can create nested hierarchies.
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Example:

module world

{

/** Some IDL definitions */

module europe

{

/** Other IDL definitions */

};

};

Modules can be reopened. Incremental definition of modules is useful if specifications
are written by a number of developers (instead of creating a giant definition inside
a single module, you can break the module into a number of separate source files).

Example:

module world

{

/** Some IDL definitions */

};

// ...

module world

{

/** Other IDL definitions */

};

The CCM Tools don’t support global scope IDL definitions, thus, every IDL artefact
must be placed within at least one module.

3.4 Basic IDL Types

IDL provides a number of build–in basic types. The CORBA specification requires
that language mappings preserve the size of basic IDL types. To avoid restricting
the possible target environments and languages, the specification leaves the size and
range requirements for IDL basic types loose.

3.4.1 Integer Types

• short (range from −215 to 215 − 1, size ≥ 16 bits)

• long (range from −231 to 231 − 1, size ≥ 32 bits)
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• unsigned short (range from 0 to 216 − 1, size ≥ 16 bits)

• unsigned long (range from 0 to 232 − 1, size ≥ 32 bits)

3.4.2 Floating–Point Types

• float (IEEE single–precision, size ≥ 32 bits)

• double (IEEE double–precision, size ≥ 64 bits)

3.4.3 Characters

• char (ISO Latin–1, ≥ 8 bits)

• wchar (≥ 16 bits)

3.4.4 Strings

• string (ISO Latin–1, variable–length)

• wstring (variable–length)

3.4.5 Booleans

Boolean values can have only the values TRUE and FALSE.

3.4.6 Octets

The IDL type octet is an 8–bit type that is guaranteed not to undergo any changes
in representation as it is transmitted between processes.

3.4.7 Type any

Type any is a universal container type. A value of type any can hold a value of any
other IDL type (e.g. long, string, or even another value of type any). Type any

is useful when you don’t know at compile time what IDL types you will eventually
need to transmit between client and server, you can find out at runtime what type
of value is contained in the any. It is recommended to use a typedef construct to
introduce any types in your interface definition files.

Example:

typedef any GenericType;
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3.5 User–Defined IDL Types

In addition to providing the build–in basic types, IDL permits you to define com-
plex types: enumerations, structures and sequences. You can also use typedef to
explicitly name a type.

3.5.1 Named Types

You can use typedef to create a new name for a type or to rename an existing type.

Example:

module world

{

typedef long TimeStamp;

}; // end of module world

Be careful about the semantics of IDL typedef. It depends on the language mapping
whether an IDL typedef results in a new, separate type or only an alias. To avoid
potential problems, you should define each logical type exactly once and then use
that definition consistently throughout your specification.

3.5.2 Enumerations

An IDL enumerated type definition looks much like the C++ version.

Example:

module world

{

enum Color

{

red,

green,

blue

};

}; // end of module world

This example introduces a type named Color that becomes a new type in its own
right - there is no need to use a typedef to name the type.

3.5.3 Structures

IDL supports structures containing one or more named members of arbitrary type,
including user–defined complex types.
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Example:

module world

{

struct TimeOfDay

{

short hh;

short mm;

short ss;

};

}; // end of module world

This definition introduces a new type called TimeOfDay. Structure definition form
a namespace, so the names of the structure members need to be unique only within
their enclosing structure.

3.5.4 Sequences

Sequences are variable–length vectors that can contain any element type.

Example:

module world

{

typedef sequence<Color> Colors;

}; // end of module world

A sequence can hold any number of elements up to the memory limits of your
platform.

3.6 Interfaces

The focus of IDL is on interfaces and operations. IDL interfaces define only the
interface to an object and say nothing about the object’s implementation. This has
the following consequences:

• By definition, everything in an interface is public. Things are made private by
simply not saying anything about them.

• IDL interfaces don’t have member variables. Member variables store state,
and the state of an object is an implementation concern.

IDL interfaces form a namespace. You can nest the following constructs inside an
interface: constant definitions, attribute definitions, and operation definitions.
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Example:

module world

{

interface IFace

{

/** Constant definitions */

/** Attibute definitions */

/** Operation definitions */

};

}; // end of module world

It is important to note that IDL operations and attributes define the only com-
munication path between objects. The kinds of information traveling along the
communication path are the parameters, return value, and exceptions of an opera-
tion.

3.6.1 Constant Definitions

IDL permits the definition of constants, thus, you can define floating–point, integer,
character, string, boolean, and octet constants. IDL does not allow you to define a
constant of type any nor a user–defined complex type.

Example:

module europe

{

interface ConstantsTest

{

const boolean BOOLEAN_CONST = TRUE;

const octet OCTET_CONST = 255;

const short SHORT_CONST = -10;

const unsigned short USHORT_CONST = 7;

const long LONG_CONST = -7777;

const unsigned long ULONG_CONST = 7777;

const char CHAR_CONST = ’c’;

const string STRING_CONST = "1234567890";

const float FLOAT_CONST = 3.14;

const double DOUBLE_CONST = 3.1415926;

};

}; // end of module europe
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3.6.2 Attributes

An attribute can be used to create something like a public member variable. In
fact, an attribute defines a pair of operations the client can call to sent and receive
a value. Note that IDL attributes don’t define storage or state.

Example:

module america

{

struct Person

{

long id;

string name;

};

interface AttributeInterface

{

attribute long longAttr;

attribute double doubleAttr;

attribute string stringAttr;

attribute Person personAttr;

};

}; // end of module america

Attributes can be of any type, including user–defined complex types.

3.6.3 Operations

An operation definition can occur only as part of an interface definition, and must
contain:

• A return result type

• An operation name

• Zero or more parameter declarations

Example:

module austria

{

interface SimpleInterface

{

/**

* This is the simplest possible operation, because
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* op requires no parameters and does not return a value.

*/

void op();

};

}; // end of module austria

Notice that a parameter must be qualified with one of three directional attributes:

• in
The in attribute indicates that the parameter is sent from the client to the
server.

• out
The out attribute indicates that the parameter is sent from the server to the
client.

• inout
The inout attribute indicates a parameter that is initialized by the client
and sent to the server. The server can modify the parameter value, so, after
the operation completes, the client–supplied parameter value may have been
changed by the server.

Example:

module styria

{

interface AnotherInterface

{

long op(in long p1, inout string p2, out double p3);

};

}; // end of module styria

Operation names are scoped by their enclosing interface and must be unique within
that interface, so overloading of operations is not possible in IDL.

3.6.4 Exceptions

IDL uses exceptions as a standard way to indicate error conditions. Basically, an
exception is defined much like an IDL structure, and can contain an arbitrary amount
of error information of arbitrary type.
Operations may raise more than one type of exception, and must indicate all the
exceptions they may possible raise. It is illegal for an operation to throw an exception
that is not listed in the raises expression.
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Example:

module world

{

exception SuperError

{

};

exception FatalError

{

string message;

};

module europe

{

interface IFace

{

long op(in string name) raises (SuperError, FatalError);

};

}; // end of module europe

};

IDL does not support exception inheritance. That means that you cannot
arrange error conditions into logical hierarchies and catch all exceptions in a subtree
by catching a base exception.

3.6.5 Inheritance

IDL interfaces can inherit from each other. A derived interface can be treated as if
it were a base interface, so in all contexts in which a base interface is expected, a
derived interface can actually be passed at runtime (some call it polymorphism).

Example:

module america

{

interface SuperType1

{

attribute long attr1;

long op1(in string str);

};

}; // end of module america

module europe

{
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interface SuperType2

{

attribute long attr2;

long op2(in string str);

};

interface SubType : america::SuperType1, SuperType2

{

attribute long attr3;

long op3(in string str);

};

}; // end of module europe

As shown in the example, IDL supports multiple inheritance too.
Note that any form of operation or attribute overloading is illegal in IDL.
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Component Model

4.1 Introduction

. . .
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4.2 CCM Tools Component Model

A component type is a specific, named collection of features that can be described
by an Interface Definition Language (IDL) and encapsulates its internal repre-
sentation and implementation.

Figure 4.1: CCM Tools component model.

To describe software components, some additional keywords have been introduced
to the Interface Definition Language (IDL). A component definition may contain
the following surface features:

• Attributes

• Supported interfaces

• Provides interfaces

• Used interfaces

Additionally, a home definition must be declared for every component type. These
component homes act as a factory for component instances.

Example:

#include <world/CommonInterface.idl>

#include <world/FirstInterface.idl>

#include <world/SecondInterface.idl>

module world

{

/*

* A component description collects zero or more surface

* features to a new component type.

*/
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component SimpleComponent supports CommonInterface

{

/*

* Supported interfaces can be used to add attributes and

* operations to the equivalent component interface (it’s

* a kind of interface inheritance).

*/

/*

* Component attributes can be used to configure a

* particular component instance, and are added to the

* equivalent component interface.

*/

attribute string version;

/*

* Provided interfaces must be implemented by the component’s

* business logic, and can be used by clients or other

* components.

*/

provides FirstInterface first;

/*

* Used interfaces are implemented by another component.

* A component’s business logic call operations on used

* interfaces to communicate with other component instances.

*/

uses SecondInterface second;

};

/*

* A home definition must be declared for every component type.

*/

home SimpleComponentHome manages SimpleComponent

{

/*

* A home definition may contain zero or more factory

* definitions. Each factory method can be used to

* create an instance of the given componet type.

*/

factory createWithVersion(in string version);

};

}; // end of module world
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A component description will be transformed into a set of equivalent interfaces
which define the component’s API for clients and other component instances. In
the following sections these equivalent interfaces will be described in detail.

4.2.1 Home Interface

4.2.2 Component Interface

The component home interface implicitly provides a create() operation to create
instances of the managed component type.

4.2.3 Provided Interfaces

4.2.4 Used Interfaces
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Login Example

5.1 Introduction

As a quick tour through component–based software development using CCM Tools,
we implement a simple component that provides single interface to its clients.

Figure 5.1: A simple component example.

You will see how to define a simple component (Fig. 5.1) in the CCM Tool’s Interface
Definition Language (IDL) and how to use CCM Tools to generate code in different
programming languages.

The following sections are structured in form of CCM Tools use cases. Each use
case describes a usage scenario for a particular set of CCM Tools features. At the
end of a use case, you will have a running component example.

This chapter contains a lot of CCM Tools stuff which will be described very brief,
never mind, you can find more exhaustive explanations in the related manual chap-
ters.

31



32 CHAPTER 5. LOGIN EXAMPLE

5.2 Component Definition

We define components using the CCM Tools Interface Definition Language
(IDL), which is actually a subset of the CORBA IDL3 specification. As shown
in the following listing, a component definition may imply the definition of a com-
ponent home, one or more interfaces, operation parameters and exceptions.

module app l i c a t i o n
{

enum Group { GUEST, USER, ADMIN } ;

s t r u c t PersonData
{

long id ;
s t r i n g name ;
s t r i n g password ;
Group group ;

} ;

except ion Inval idPersonData
{

s t r i n g message ;
} ;

i n t e r f a c e Login
{

boolean i sVa l idUse r ( in PersonData person )
r a i s e s ( Inval idPersonData ) ;

} ;

component Server
{

prov ide s Login l o g i n ;
} ;

home ServerHome manages Server { } ;
} ;

We store these IDL definitions in a file called Login.idl:

Login
‘-- Login.idl

Here we can give only a short description of these IDL artifacts, you can find more
information in chapter 3 of this manual.

• Modules (e.g. application).
Modules combine related IDL definitions into a logical group and prevent
pollution of the global namespace.

• User Defined Types (e.g. Group, PersonData).
In addition to build–in types like long, boolean, string, etc. a component
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designer can define its own types using, for example, enum and struct dec-
larations. Such user defined types can act as operation parameters as well as
attribute types.

• Exceptions (e.g. InvalidPersonData).
To report an error condition, operations can throw one or more exceptions.
Before we can declare an exception as part of an operation’s raises section,
we have to define the exception which is pretty similar to defining a structure
type.

• Interfaces (e.g. Login).
An interface defines a named set of operations and attributes. Each opera-
tion definition contains a result type, operation name, parameter list (which
can also be empty) and an optional exception list. In IDL, each operation
parameter includes a passing direction:

– in: the parameter is passed from the caller to the callee.

– out: the parameter is passed from the callee back to the caller.

– inout: the parameter is passed from the caller to the callee, modified
and sent back to the caller.

• Components (e.g. Server):
A component uses interfaces to define input and output ports called facets
and receptacles. While a facet’s interface is implemented in the same compo-
nent, a receptacle’s interface uses implementations of connected facets of other
components.

• Component Homes (e.g. ServerHome):
To have an entry point for component instantiation, we define a component
home. In the case of an empty home definition, a standard create() operation
will be generated from the CCM Tools.

From these few lines of IDL, we can generate a lot of structural code which imple-
ments the features of the CCM Tools component model.
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5.3 IDL Repository Directory

From the Login.idl file, the CCM Tools generate an IDL Repository Directory.
This idl3repo directory contains all defined IDL artifacts in separated files and in
a uniform structure.

> ccmidl -idl3 -o ./idl3repo Login.idl

After this step, you should see the following directory structure:

Login
|-- Login.idl
|-- idl3repo
| |-- component
| | ‘-- application
| | |-- Server.idl
| | ‘-- ServerHome.idl
| ‘-- interface
| ‘-- application
| |-- Group.idl
| |-- InvalidPersonData.idl
| |-- Login.idl
| ‘-- PersonData.idl

In this IDL repository, which is the starting point for all other CCM Tools activities,
there are two subdirectories:

• The interface directory contains all IDL interface, parameter, exception, etc.
definitions.

• The component directory contains all component and home definitions.

Each IDL artefact is stored in its own file within a directory that conforms to the
defined IDL module hierarchy.

For example, the interface Login has been defined in the module application, thus,
this interface is stored in the directory interface/application in a file named
Login.idl within the IDL repository.

From the developers point of view, it does not matter if the component definitions
are stored in a single or in multiple source files, the generated idl3repo directory
tree is the same in both cases.
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5.4 Use Case 1: Local C++ Components

To introduce the first CCM Tools use case, we implement a local C++ component
and a collocated unit test. This use case is adequate for a developers who implements
large but modular C++ applications.

The implementation of local C++ components requires the following activities:

• Model the component’s structure in IDL (see section 5.2).

• Generate the local component logic.

• Implement the component’s business logic.

• Implement a local component client.

It is an important point that modeling of IDL interfaces and components is com-
pletely independent of component implementations. As you will see, we use IDL
artifacts stored in the IDL repository directory to generate both C++ and Java
code.

5.4.1 Generate the local component logic

From the IDL repository directory the CCM Tools generate a component skeleton
which establishes the component’s structure, provides C++ interfaces to clients or
other components, and uses the C++ runtime environment.

> mkdir c++
> mkdir c++/server
> cd c++/server

> ccmtools c++local -I../../idl3repo/interface -I../../idl3repo/component \
-o ./src/interface \
../../idl3repo/interface/application/*.idl

> ccmtools c++local -I../../idl3repo/interface -I../../idl3repo/component \
-a \
-o ./src/component/Server \
../../idl3repo/component/application/Server*.idl

After this code generation step, you can see the following directory structure:

Login/c++/server
‘-- src
|-- component
| ‘-- Server
| |-- GEN_ccmtools_local_application
| |-- GEN_ccmtools_local_application_share
| ‘-- application_ServerHome_entry.h
‘-- interface

|-- GEN_application
‘-- GEN_ccmtools_local_application
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Basically, all directories starting with ’GEN ’ contain component logic which is com-
pletely generated (so there is no need to check–in these directories into a CVS like
system). The component logic fills the gap between a component’s interfaces and
its business logic implementation.

Note that generated component logic can change between different CCM Tools ver-
sions to improve component non functional behavior. Such changes do neither af-
fect component interfaces nor your business logic implementation which realizes the
functional behavior of components.

5.4.2 Implement the component’s business logic

Component business logic will be embedded in the generated component logic. To
make life easier, we used the -a option during code generation. This flag forces the
code generator to generate application skeletons.

You can find these application skeletons * impl.* files in the src/component/Server
subdirectory:

Login/c++/server
‘-- src
|-- component
| ‘-- Server
| |-- ServerHome_impl.cc
| |-- ServerHome_impl.h
| |-- Server_impl.cc
| |-- Server_impl.h
| |-- Server_login_impl.cc
| |-- Server_login_impl.h

As a developer, you are responsible for these files because they represent the com-
ponent’s business logic (you should check–in these files into a CVS like system).

There is a direct relationship between IDL and these business logic files:

• ServerHome impl.*

For each component home, an implementation class is generated which pro-
vides an implementation of the default create() operation. Additionally, the
ServerHome impl.cc file contains the implementation of the global:
create application ServerHome() function which represents the business
logic entry point used by the generated component logic.

• Server impl.*

For each component, an implementation class is generated which provides
default implementations of the component’s callback operations.

• Server login impl.*

For each facet, an implementation class is generated which provides empty
business logic operation skeletons.
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It is a good idea to generate these application skeletons only once - when starting
component implementation. Small changes in IDL definitions can be appended
pretty easy to these implementation classes manually.

Note that these implementation files are not overwritten by the CCM Tools. The
generator replaces only untouched source files, otherwise the generated files are
stored with a ’.new’ suffix.

To implement the Login example’s business logic, you open the Server login impl.cc

file and implement the following code snippet:

bool
Se r v e r l o g i n imp l : : i sVa l idUse r ( const app l i c a t i on : : PersonData& person )

throw(Components : : CCMException , app l i c a t i o n : : Inval idPersonData )
{

i f ( person . name . l ength ( ) == 0)
throw app l i c a t i on : : Inval idPersonData ( ) ;

i f ( person . id == 277
&& person . name == ” e t e i n i k ”
&& person . group == USER)

{
return true ;

}
else
{

return fa l se ;
}

}

Now, we can use Confix to build this component example. To tell Confix which
directory should be built, Confix2.* files must be created in each source code
directory. Of course, you can delegate this work to the CCM Tools:

> ccmconfix -confix2 -o ./src -pname "login" -pversion "1.0.0"

Finally, you start Confix to build all generated and manually implemented source
files:

> confix2.py --packageroot=‘pwd‘/src --bootstrap --configure --make

Now we are ready to test this local C++ component implementation.

5.4.3 Implement a local component client

Instead of a real client with a complex GUI, we simply implement a unit test for
the component we have built in the last section.

We create a src/component/Server/test directory and store the following code in
a file called check application Server.cc:
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#include <Components/ ccmtools . h>
#include <app l i c a t i on /ServerHome gen . h>

using namespace std ;
using namespace app l i c a t i on ;

int main ( int argc , char ∗argv [ ] )
{

i f ( dep loy app l i cat ion ServerHome ( ”ServerHome” ) )
{

c e r r << ”ERROR: Can ’ t deploy component homes ! ” << endl ;
return −1;

}

try
{

Components : : HomeFinder∗ homeFinder = Components : : HomeFinder : : In s tance ( ) ;

ServerHome : : SmartPtr serverHome (dynamic cast<ServerHome∗>(
homeFinder−>f ind home by name ( ”ServerHome” ) . ptr ( ) ) ) ;

Server : : SmartPtr s e r v e r ;
Login : : SmatrPtr l o g i n ;

s e r v e r = serverHome−>c r e a t e ( ) ;
l o g i n = server−>p r ov i d e l o g i n ( ) ;
s e rver−>con f i gu ra t i on comp l e t e ( ) ;

// Implement your t e s t cases here ! ! !

s e rver−>remove ( ) ;
}
catch (Components : : Exception& e )
{

c e r r << ”ERROR: ” << e . what ( ) << endl ;
return −2;

}

i f ( undeploy appl icat ion ServerHome ( ”ServerHome” ) )
{

c e r r << ”ERROR: Can ’ t undeploy component home ! ” << endl ;
return −3;

}
}

Each functional test case can be inserted into this unit test template shown above.
This code snipped is very similar for all simple component unit tests (see section 5.8
for a more sophisticated test setting). It deploys the component home object, creates
a component instance, uses the component’s equivalent interface to get a facet, and
completes the configuration phase.
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After this setup process, we can execute our component test cases (we will discuss
the implementation of these test cases later).

Finally, we remove the component instance and undeploy the component home ob-
ject.

Our first test case shows the usage of the Server component and its login facet. We
fill the PersonData structure with valid data and call the isValidUser() operation.
Depending on the component’s result we print out a message to the console.

try
{

PersonData person (277 , ” e t e i n i k ” , ” e t e i n i k ” , USER) ;

bool r e s u l t = log in−>i sVa l idUse r ( person ) ;
i f ( r e s u l t )
{

cout << ”Welcome ” << person . name << endl ;
}
else
{

cout << ”Sorry , we don ’ t know you ! ! ! ” << endl ;
}

}
catch ( Inval idPersonData& e )
{

cout << ”Error : Inval idPersonData ! ! ” << endl ;
}

The second test case shows the component’s behavior for an invalid PersonData

structure. This test expects an InvalidPersonData exception to succeed.

try
{

PersonData person (0 , ”” , ”” , USER) ;

l og in−>i sVa l idUse r ( person ) ;
a s s e r t ( fa l se ) ;

}
catch ( Inval idPersonData& e )
{

cout << ”OK, caught Inval idPersonData except ion ! ” << endl ;
}

It is up to you to decide if you put both test cases into the same check * file or to
implement each test case in its own file.

Note that each check * file will end in a separate executable, thus, for large appli-
cations you will need a lot of disk space.

To run these unit tests, we use Confix again:

> touch src/component/Server/test/Confix2.dir
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> confix2.py --packageroot=‘pwd‘/src --bootstrap --configure \
--make --targets=check

At the end of this build process, you hopefully see an output like:

Welcome eteinik
OK, caught InvalidPersonData exception!
PASS: login_component_Server_test__check_application_Server
==================
All 1 tests passed
==================

Of course, to implement a component for such a simple functionality is somewhat
academical, but this example shows how simple a component development cycle can
be by using CCM Tools.
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5.5 Use Case 2: Remote C++ Components

In the second CCM Tools use case, we implement a remote C++ component with
a remote unit test client based on CORBA middleware. This use case is adequate
for a developers who implements large and distributed C++ applications.

The implementation of remote C++ components requires the following activities:

• Model the component’s structure in IDL (see section 5.2).

• Implement the local component (see section 5.4).

• Generate the remote component logic.

• Implement a minimal CORBA server.

• Implement a remote component client.

For a given local C++ component implementation, a set of CORBA adapters and
converters can be generated which establish a remote component logic. This step
from local to remote C++ components is completely automated by the CCM Tools.

5.5.1 Generate the remote component logic

Currently, CORBA middleware is used for inter–process communication, thus, local
C++ interfaces must be adapted to CORBA objects and vice versa.

To realize CORBA interactions, we need CORBA stub and skeleton classes gener-
ated by a particular IDL compiler. While components are modeled in IDL3, usual
IDL compilers assume IDL2 (without keywords like component or home). For that
reason, a CCM Tools generator transforms IDL3 to IDL2, as defined in the CCM
specification:

> ccmidl -idl2 -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/GEN_ccmtools_corba_stubs \
../../idl3repo/interface/application/*.idl

> ccmidl -idl2 -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/GEN_ccmtools_corba_stubs \
../../idl3repo/component/application/Server*.idl

In this example, all generated IDL2 files are stored in a directory called GEN ccmtools corba stubs:

Login/c++/server
|-- component
| ‘-- Server
| |-- GEN_ccmtools_corba_stubs

In this GEN ccmtools corba stubs directory we call the IDL compiler for every
single file (the CCM Tools provide a script that can do this in a single call):
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> cd src/component/Server/GEN_ccmtools_corba_stubs
> ccmtools-idl -mico -I${CCMTOOLS_HOME}/idl *.idl
> cd ../../../../

The transformed IDL2 files include interfaces which are part of the installed CCM
Tools, therefore, the IDL compiler needs the include path set to CCMTOOLS HOME/idl.

As a glue between the local C++ interfaces and the CORBA stubs and skeletons,
we generate CORBA adapters and converters:

> ccmtools c++remote -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/ \
../../idl3repo/interface/application/*.idl

> ccmtools c++remote -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/ \
../../idl3repo/component/application/Server*.idl

All generated source files are stored in the GEN ccmtools remote * directory:

Login/c++/server
‘-- src

|-- component
| ‘-- Server
| |-- GEN_ccmtools_remote_application
| ‘-- GEN_ccmtools_corba_stubs

Remember, there is no reason to check–in generated component logic files into a
CVS like system because this code can be generated from the IDL repository at
every time.

That’s it, we have extended the local C++ component from section 5.4 to a remote
component that can be accessed via CORBA 1 middleware.

5.5.2 Implement a minimal CORBA server

Before implementing a remote client, the remote component must be started as a
stand-alone CORBA server. To keep things simple, we implement this CORBA
server in a single check ccmtools remote application Server.cc file:

#include <c s t d l i b >
#include <iostream>
#include <s t r i ng >

#include <ccmtools / remote/CCMContainer . h>

#include <CORBA. h>
#include <co s s /CosNaming . h>

1 There is no technical reason for using CORBA as remote communication mechanism. Future
versions of CCM Tools could provide other middleware (e.g. SOAP) adapters too.
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#include <ccmtools / remote/ app l i c a t i o n /ServerHome remote . h>
#include <c cmtoo l s c o rba app l i c a t i on Se r v e r . h>

using namespace std ;
int main ( int argc , char ∗argv [ ] )
{

int a rgc = 3 ;
char∗ argv [ ] =
{

”” ,
”−ORBInitRef” ,
”NameService=corba loc : i i o p : 1 . 2 @loca lhos t :5050/ NameService”

} ;
CORBA: : ORB var orb = CORBA: : ORB init ( argc , argv ) ;

// Reg i s t e r a l l va lue type f a c t o r i e s wi th the ORB
: : ccmtools : : remote : : r e g i s t e r a l l f a c t o r i e s ( orb ) ;

// Deploy l o c a l and remote component homes
int e r r o r = 0 ;
e r r o r += deploy app l i cat ion ServerHome ( ”ServerHome” ) ;
e r r o r += dep loy ccmtoo l s r emote app l i ca t ion ServerHome ( orb , ”ServerHome” ) ;
i f ( ! e r r o r )
{

cout << ”ServerHome s e r v e r i s running . . . ” << endl ;
}
else
{

c e r r << ”ERROR: Can ’ t deploy components ! ” << endl ;
return −1;

}
orb−>run ( ) ;

}
We save this check application ccm remote Server.cc file into the component’s
test directory:

Login/c++/server
‘-- src

|-- component
| ‘-- Server
| ‘-- test
| ‘-- _check_ccmtools_remote_application_Server.cc

This minimal CORBA server code initializes the ORB and deploys the local and
remote component. Remote component deployment also implies the registration of
the component home object at the CORBA name service.

Make sure that a CORBA name service is running on your box (e.g. orbd which ist
a Java tool):

> orbd -ORBInitialPort 5050

Finally, we run Confix to build all source files and to start the unit test:
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> ccmconfix -confix2 -o src -pname "login" -pversion "1.0.0"

> confix2.py --packageroot=‘pwd‘/src --bootstrap --configure \
--make --targets=check

At the end of this build process, you should see the following output:

ServerHome server is running...

5.5.3 Implement a remote component client

We implement a remote component client as a simple unit test. Because this client
runs in a separate process (probably on a different machine), we have to generate
and build the CORBA stub and skeleton classes for the client–side again:

> ccmidl -idl2 -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/GEN_ccmtools_corba_stubs \
../../idl3repo/interface/application/*.idl

> ccmidl -idl2 -I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/Server/GEN_ccmtools_corba_stubs \
../../idl3repo/component/application/Server*.idl

In addition to the generated stubs and skeletons, we store the remote test client in a
file named check ccmtools remote client.cc in the following directory structure:

Login/c++/client
‘-- src

|-- component
| ‘-- Server
| ‘-- GEN_ccmtools_corba_stubs
‘-- test

‘-- _check_ccmtools_remote_client.cc

The remote client’s implementation follows the structure of a local client but uses
the IDL to C++ mapping specified by the OMG.

#include <c s t d l i b >
#include <iostream>
#include <s t r i ng >

#include <CORBA. h>
#include <co s s /CosNaming . h>

#include <ccmtools / remote/CCMContainer . h>
#include <ccmtoo l s corba app l i ca t ion ServerHome . h>

using namespace std ;
using namespace ccmtools : : corba : : a pp l i c a t i o n ;

int main ( int argc , char ∗argv [ ] )
{

int a rgc = 3 ;
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char∗ argv [ ] =
{

”” ,
”−ORBInitRef” ,
”NameService=corba loc : i i o p : 1 . 2 @loca lhos t :5050/ NameService”

} ;
CORBA: : ORB var orb = CORBA: : ORB init ( argc , argv ) ;

CORBA: : Object var obj =
orb−>r e s o l v e i n i t i a l r e f e r e n c e s ( ”NameService” ) ;

CosNaming : : NamingContextExt var nc =
CosNaming : : NamingContextExt : : narrow ( obj ) ;

// Find ComponentHomes in the Naming−Serv i c e
obj = nc−>r e s o l v e s t r ( ”ServerHome” ) ;
ServerHome var home = ServerHome : : narrow ( obj ) ;

// Create component in s t ance s
Serve r va r s e r v e r = home−>c r e a t e ( ) ;
Log in var l o g i n = server−>p r ov i d e l o g i n ( ) ;
s e rver−>con f i gu ra t i on comp l e t e ( ) ;

// Run t e s t cases
try
{

PersonData person ;
person . id = 277 ;
person . name = CORBA: : s t r ing dup ( ” e t e i n i k ” ) ;
person . password = CORBA: : s t r ing dup ( ” e t e i n i k ” ) ;
person . group = USER;

CORBA: : Boolean r e s u l t = log in−>i sVa l idUse r ( person ) ;

i f ( r e s u l t )
{

cout << ”Welcome ” << person . name << endl ;
}
else
{

cout << ”We don ’ t know you ! ! ! ” << endl ;
}

}
catch ( Inval idPersonData& e )
{

cout << ”Error : Inval idPersonData ” << endl ;
}

try
{

PersonData person ;
person . id = 0 ;
person . name = CORBA: : s t r ing dup ( ”” ) ; // Here we c rea t e an error ! ! !
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person . password = CORBA: : s t r ing dup ( ”” ) ;
person . group = USER;

log in−>i sVa l idUse r ( person ) ;
a s s e r t ( fa l se ) ;

}
catch ( Inval idPersonData& e )
{

cout << ”OK, caught Inval idPersonData except ion ! ” << endl ;
}

// Destroy component in s t ance s
s e rver−>remove ( ) ;

}

Again, we use Confix to build and run the test client:

> ccmconfix -confix2 -o src -pname "login-remote-client" -pversion "1.0.0"

> confix2.py --packageroot=‘pwd‘/src --bootstrap --configure \
--make --targets=check

When you see the following output on the console, you have successfully implemented
the first distributed component application:

Welcome eteinik
OK, caught InvalidPersonData exception!
PASS: login-remote-client_test__check_ccmtools_remote_client
==================
All 1 tests passed
==================

The important point is that we did not change the business logic implementation.
Instead, we reused the local component and generated a remote layer using the CCM
Tools.
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5.6 Use Case 3: Local Java Components

In this section, we implement a local Java component and a collocated test client.
This CCM Tools use case is intended for developers who implement large and mod-
ular Java applications.

The implementation of local Java components requires the following activities:

• Model the component’s structure in IDL (see section 5.2).

• Generate the local component logic.

• Implement the component business logic.

• Implement a collocated component client.

In the following sections, we use the IDL definitions stored in the IDL repository
directory as starting point for all Java code generations.

5.6.1 Generate the local component logic

A local Java component logic includes a set of Java interfaces (-iface option)
and a pure Java implementation (-local) which delegates client calls to the hosted
business logic. Local Java component logic can be generated from the IDL repository
using the CCM Tools:

> mkdir java
> mkdir java/server
> cd java/server

> ccmjava -iface -local \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/interface/application/*.idl

> ccmjava -iface -local \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/component/application/Server*.idl

These code generation steps result in the following file structure:

Login/java/server
‘-- src-gen

‘-- application

In contrast to C++ component logic, in Java we store all generated files in a tem-
porary src-gen directory.
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5.6.2 Implement the component business logic

A set of generated interfaces act as the borderline between component- and business
logic. A business logic developer is free to realize the implementation classes as long
as the right interfaces will be implemented.

As a CCM Tools feature, these implementation classes can be generated with de-
fault implementations (mostly empty method skeletons). These application class
skeletons are generated in a separate directory called src:

> ccmjava -app \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src \
../../idl3repo/component/application/Server*.idl

Note the strict separation between generated component logic (src-gen) and busi-
ness logic (src). As a developer, you are responsible for the src directory tree - you
should use a CVS like code versioning system for this directory.

Login/java/server
|-- src
| ‘-- application
| |-- ServerHomeFactory.java
| |-- ServerHomeImpl.java
| |-- ServerImpl.java
| ‘-- ServerloginImpl.java
‘-- src-gen

There is a direct relationship between IDL definitions and generated business logic
skeleton classes:

• ServerHomeFactory.java

For each component home, a factory class is generated which implements a
create() method that acts as entry point for business logic instantiation.

• ServerHomeImpl.java

For each component home, an implementation class is generated which pro-
vides an implementation of the default create() method.

• ServerImpl.java

For each component, an implementation class is generated which provides
default implementations of the component’s callback operations.

• ServerloginImpl.*

For each facet, an implementation class is generated which provides skeletons
for business logic implementations.

Note that these implementation files can not be overwritten by the CCM Tools.
Generators replaces only untouched implementation files, otherwise the re–generated
files are stored with a ’.new’ suffix.
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To implement the Login example’s business logic, you can open the ServerloginImpl.java
file and implement the following code snippet:

public boolean i sVa l idUse r ( PersonData person )
throws CCMException , Inval idPersonData

{
i f ( person . getName ( ) . l ength ( ) == 0)

throw new Inval idPersonData ( ) ;

i f ( person . get Id ( ) == 277
&& person . getName ( ) . equa l s ( ” e t e i n i k ” )
&& person . getGroup ( ) == Group .USER)

{
return true ;

}
else
{

return fa l se ;
}

}
Ant is used to build the Java component example. Here is an adequate build.xml
file:

<project name="LoginServer" default="compile">

<property name="build" location="build" />
<property name="src" location="src" />
<property name="src-gen" location="src-gen" />

<path id="compile.classpath">
<pathelement path="${java.class.path}" />

</path>

<target name="init" description="" >
<mkdir dir="${build}" />

</target>

<target name="compile" depends="init" description="" >
<javac srcdir="${src-gen}:${src}" destdir="${build}"

debug="on" source="1.5" target="1.5">
<classpath refid="compile.classpath" />

</javac>
</target>

<target name="clean" description="" >
<delete dir="${build}" />

</target>
</project>

You can start the Ant build process with:

> ant

OK, you have implemented the firts Java component.
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5.6.3 Implement a collocated component client

To test the local component, a simple ClientLocal class is implemented in the
component’s src directory:

Login/java/server
|-- src
| |-- ClientLocal.java
| ‘-- application
‘-- src-gen

The following listing shows a client’s setup and tear down code. Before a component
type can be used, we call the component’s deploy() method which instantiates the
component home object and register it to the local HomeFinder singleton. On the
other hand, before we terminate an application we call a component’s undeploy()

method to free the registered component home object.

import app l i c a t i on . ∗ ;
import Components . HomeFinder ;
import ccmtools . l o c a l . Se rv i c eLocato r ;

public class Cl i en tLoca l
{

public stat ic void main ( St r ing [ ] a rgs )
{

try
{

ServerHomeDeployment . deploy ( ”ServerHome” ) ;
}
catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

// TODO: c l i e n t ’ s bu s ine s s l o g i c implementat ion

try
{

ServerHomeDeployment . undeploy ( ”ServerHome” ) ;
}
catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

}
}

The next listing shows a client’s business logic implementation. Note that all inter-
actions between client and component are based on generated interfaces.

try
{

HomeFinder homeFinder = HomeFinder . i n s t anc e ( ) ;
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ServerHome home = ( ServerHome ) homeFinder . f ind home by name ( ”ServerHome” ) ;
Server s e r v e r = home . c r e a t e ( ) ;
s e r v e r . c on f i gu ra t i on comp l e t e ( ) ;
Login l o g i n = s e rv e r . p r ov i d e l o g i n ( ) ;

try
{

PersonData person = new PersonData (277 , ” e t e i n i k ” , ” e t e i n i k ” , Group .USER) ;
boolean r e s u l t = l o g i n . i sVa l idUse r ( person ) ;

i f ( r e s u l t )
{

System . out . p r i n t l n ( ”Welcome ” + person . getName ( ) ) ;
}
else
{

System . out . p r i n t l n ( ”We don ’ t know you . . . ” ) ;
}

}
catch ( Inval idPersonData e )
{

System . e r r . p r i n t l n ( ”Error : Inval idPersonData ! ” ) ;
}

try
{

PersonData person = new PersonData (0 , ”” , ”” , Group .USER) ;
l o g i n . i sVa l idUse r ( person ) ;
a s s e r t ( fa l se ) ;

}
catch ( Inval idPersonData e )
{

System . e r r . p r i n t l n ( ”OK, caught Inval idPersonData except ion ! ” ) ;
}

s e r v e r . remove ( ) ;
}
catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

To run this test, start the Ant build process and execute the local client from the
command line:

> ant

> java -enableassertions \
-cp $CCMTOOLS_HOME/lib/ccm-runtime.jar:./build \
ClientLocal

Now, you should see the following console output:



52 CHAPTER 5. LOGIN EXAMPLE

Welcome eteinik
OK, caught InvalidPersonData exception!

Well done!



5.7. USE CASE 4: REMOTE JAVA COMPONENTS 53

5.7 Use Case 4: Remote Java Components

In this CCM Tools use case, we implement a remote Java component and a local
test client which uses a Java client library component. This use case is adequate for
developers who implement large and distributed Java applications.

The implementation of remote Java components requires the following activities:

• Model the component’s structure in IDL (see section 5.2).

• Implement the local component (see section 5.6).

• Generate the remote component logic.

• Implement a minimal CORBA server.

• Generate the client library component.

• Implement a local component client.

You will see in the next sections that most of the development steps needed to
extend local components to remote Java components can be completely automated
by the CCM Tools.

This section assumes that there is already a local Java component implementation
which can be transform into a remote one.

5.7.1 Generate remote component logic in Java

We use CORBA middleware to overcome process boundaries. For noncritical appli-
cations you can use the Java build–in CORBA ORB. To turn a local Java component
into a remote component, we have to generate CORBA stubs and skeletons as well
as a bunch of adapter and converter classes.

Generation of CORBA stubs and skeletons includes an IDL3 to IDL2 transformation
and multiple calls to an external IDL compiler. We can use the CCM Tools script
ccmtools-idl to call Java’s build–in IDL compiler:

> ccmidl -idl2 \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen/idl2 \
../../idl3repo/interface/application/*.idl

> ccmidl -idl2 \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen/idl2 \
../../idl3repo/component/application/Server*.idl

> ccmtools-idl -java \
-I${CCMTOOLS_HOME}/idl -I./src-gen/idl2 \
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-o ./src-gen \
./src-gen/idl2/*.idl

Another pair of CCM Tools calls create CORBA adapter and converter classes:

> ccmjava -remote \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/interface/application/*.idl

> ccmjava -remote \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/component/application/Server*.idl

After all, you can see the following directory structure:

Login/java/server
‘-- src-gen

|-- application
| ‘-- ccm
| |-- local
| ‘-- remote
‘-- idl2

Each single file in this src-gen directory has been generated, so, there is no need
for a CVS like check–in.

5.7.2 Implement minimal CORBA server in Java

For starting up a remote component, a minimal CORBA server can be implemented
which initialize the ORB (by passing command line parameters), deploys the remote
component home and runs the ORB.

import org . omg .CORBA.ORB;
import ccmtools . l o c a l . Se rv i c eLocato r ;

public class Server
{

public stat ic void main ( St r ing [ ] a rgs )
{

try
{

// Set up the Serv iceLoca tor s i n g l e t o n
ORB orb = ORB. i n i t ( args , null ) ;
Se rv i c eLocato r . i n s t anc e ( ) . setCorbaOrb ( orb ) ;

ccmtools . remote . app l i c a t i o n . ServerHomeDeployment . deploy ( ”ServerHome” ) ;
System . out . p r i n t l n ( ”ServerHome s e r v e r i s running . . . ” ) ;
orb . run ( ) ;

}
catch ( Exception e )
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{
e . pr intStackTrace ( ) ;

}
}

This server class called Server is stored in the src directory:

Login/java/server
|-- src
| |-- Server.java
| ‘-- application

Don’t forget to start a CORBA name service, because a component deployment
implies the registration of the component home object.

> orbd -ORBInitialPort 5050

We can run the same Ant build script as we have used for building the local Java
component.

> ant

Finally, we can start the minimal CORBA server to activate our remote component:

> java -enableassertions \
-cp $CCMTOOLS_HOME/lib/ccm-runtime.jar:./build \
Server \
-ORBInitRef NameService=corbaloc:iiop:1.2@localhost:5050/NameService

Your console output should look like:

ServerHome server is running...

5.7.3 Generate a client library component in Java

We have seen that a local component can be extended to a remote component
without any business logic changes. To bring the same advantage to the client side,
CCM Tools support so called Client Library Components which are a local
proxies for remote components. Client library components implement the same
interfaces as local components and delegate each local call to the corresponding
remote components.

Remote clients need CORBA stubs and skeletons of the used IDL interfaces. As a
matter of course, this redundant step can be skipped if you develop both remote
component and client on the same box.

> ccmidl -idl2 \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen/idl2 \
../../idl3repo/interface/application/*.idl

> ccmidl -idl2 \
-I../../idl3repo/interface -I../../idl3repo/component \



56 CHAPTER 5. LOGIN EXAMPLE

-o ./src-gen/idl2 \
../../idl3repo/component/application/Server*.idl

> ccmtools-idl -java \
-I${CCMTOOLS_HOME}/idl -I./src-gen/idl2 \
-o ./src-gen \
./src-gen/idl2/*.idl

On top of CORBA stubs and skeletons we generate the client library component:

> ccmjava -iface -clientlib -remote \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/interface/application/*.idl

> ccmjava -iface -clientlib \
-I../../idl3repo/interface -I../../idl3repo/component \
-o ./src-gen \
../../idl3repo/component/application/Server*.idl

All generated files are collected in the temporary src-gen directory.

5.7.4 Implement local component client in Java

Based on the generated client library component, we can implement a component
client much like a simple local Java component client.

As shown in the following listing, only the client’s setup and tear down sections are
different to a local component client implementation:

import org . omg .CORBA.ORB;
import app l i c a t i on . ∗ ;
import Components . HomeFinder ;
import ccmtools . l o c a l . Se rv i c eLocato r ;

public class Cl i en t
{

public stat ic void main ( St r ing [ ] a rgs )
{

try
{

ORB orb = ORB. i n i t ( args , null ) ;
Se rv i c eLocato r . i n s t anc e ( ) . setCorbaOrb ( orb ) ;
ServerHomeClientLibDeployment . deploy ( ”ServerHome” ) ;

}
catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

// TODO: c l i e n t ’ s bu s ine s s l o g i c implementat ion
// ( see c o l l o c a t e d c l i e n t implementat ion )
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try
{

ServerHomeClientLibDeployment . undeploy ( ”ServerHome” ) ;
}
catch ( Exception e )
{

e . pr intStackTrace ( ) ;
}

}
}

We store the client class in a src directory:

Login/java/client
|-- src
| ‘-- Client.java
‘-- src-gen

As Ant build script we can reuse the script from the server–side.

> ant

Make sure that the remote component is running before you start the client with:

> java -enableassertions \
-cp $CCMTOOLS_HOME/lib/ccm-runtime.jar:./build \
Client \
-ORBInitRef NameService=corbaloc:iiop:1.2@localhost:5050/NameService

Welcome eteinik
OK, caught InvalidPersonData exception!

Congratulations, the remote Java component is working now!
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5.8 Use Case 5: Mirror Component Concept

A serious problem in component testing is to satisfy all component ports without
having other components to connect to. In a software system, a component always
is connected to other components via facets and receptacles. To develop and test a
single component, the CCM Tools support the generation of IDL mirror component
definitions.

A Mirror Component represents the complement of a given component. For every
facet in the original component there is a receptacle in the mirror component and
vice versa. Within the mirror component, a developer can implement test cases
which describes the desired behavior of a component.

Implementation of local mirror component tests require the following activities:

• Model the component’s structure in IDL (see section 5.2).

• Implement the local component (see section 5.4)

• Generate the mirror component definition.

• Generate the local mirror component logic.

• Implement mirror component test cases.

In the following sections, we will implement mirror component test cases for a local
C++ component implementation.

5.8.1 Generate the mirror component definition

To create an IDL mirror component definition from the Server component we use
the following CCM Tools call:

> cd Login

> ccmidl -idl3mirror \
-Iidl3repo/interface -Iidl3repo/component \
-o idl3repo \
idl3repo/component/application/Server*.idl

Now, the IDL repository directory contains the new mirror component definition:

Login
|-- idl3repo
| |-- component
| | ‘-- application
| | |-- Server.idl
| | |-- ServerHome.idl
| | |-- ServerHomeMirror.idl
| | ‘-- ServerMirror.idl
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These new files are:

• ServerMirror.idl
This file contains the mirror component’s IDL definitions:

#inc lude <app l i c a t i on /Login . i d l >

module app l i c a t i o n {
component ServerMirror
{

uses : : a pp l i c a t i o n : : Login l o g i n ;
} ;

} ; // /module a p p l i c a t i o n

• ServerHomeMirror.idl
This file contains the IDL definition of the mirror component’s home:

#inc lude <app l i c a t i on / ServerMirror . i d l >

module app l i c a t i o n {
home ServerHomeMirror

manages : : a pp l i c a t i o n : : ServerMirror
{
} ;

} ; // /module a p p l i c a t i o n

Based on these new IDL definitions, we can use existing CCM Tools generators to
realize this mirror component.

5.8.2 Generate the local mirror component logic

A mirror component can be generated in the same way as a component under
test. In addition to the mirror component logic, the c++local-test generator
creates a check * file which handles the test setup where both components will be
instantiated and connected by their facets and receptacles.

> cd c++/server

> ccmtools c++local \
-I../../idl3repo/interface -I../../idl3repo/component \
-a \
-o src/component/ServerMirror \
../../idl3repo/component/application/ServerMirror.idl \
../../idl3repo/component/application/ServerHomeMirror.idl

> ccmtools c++local-test \
-I../../idl3repo/interface -I../../idl3repo/component \
-o src/component/ServerMirror \
../../idl3repo/component/application/Server.idl

These generated mirror component files are stored parallel to the other component
directory:
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Login/c++/server
‘-- src

|-- component
| |-- Server
| ‘-- ServerMirror
| |-- GEN_ccmtools_local_application
| |-- GEN_ccmtools_local_application_share
| |-- ServerHomeMirror_impl.cc
| |-- ServerHomeMirror_impl.h
| |-- ServerMirror_impl.cc
| |-- ServerMirror_impl.h
| |-- application_ServerHomeMirror_entry.h
| ‘-- test
| ‘-- _check_application_Server.cc

5.8.3 Implement mirror component test cases

As the mirror component’s business logic, we implement two test cases. We used
the -a option to force the CCM Tools to generate application class skeletons. In the
ServerMirror impl.cc class we implement the following code snippet:

void
ServerMir ror impl : : c cm act ivate ( )

throw(Components : : CCMException )
{

try
{

SmartPtr<Login> l o g i n = ctx−>g e t c onn e c t i o n l o g i n ( ) ;
try
{

PersonData person ;
person . id = 277 ;
person . name = ” e t e i n i k ” ;
person . password = ” e t e i n i k ” ;
person . group = USER;
bool r e s u l t = log in−>i sVa l idUse r ( person ) ;
i f ( r e s u l t )
{

cout << ”Welcome ” << person . name << endl ;
}
else
{

cout << ”We don ’ t know you ! ! ! ” << endl ;
}

}
catch ( Inval idPersonData& e )
{

cout << ”Error : Inval idPersonData ! ! ” << endl ;
}

try
{
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PersonData person ;
person . id = 0 ;
person . name = ”” ;
person . password = ”” ;
person . group = USER;
log in−>i sVa l idUse r ( person ) ;
a s s e r t ( fa l se ) ;

}
catch ( Inval idPersonData& e )
{

cout << ”OK, caught Inval idPersonData except ion ! ” << endl ;
}

}
catch (Components : : Exception& e )
{

c e r r << ”ERROR: ” << e . what ( ) << endl ;
}

}

ccm activate() is a callback method which will be called from the component logic
during the client’s configuration complete() call. Within this callback method,
we implement these test cases. To call operations on the original component’s facet,
we use get connection login() in the mirror component test case to get the con-
nected receptacle reference.

Finally, we use Confix to build both components and to run the unit test:

> ccmconfix -confix2 -o src -pname "login" -pversion "1.0.0"

> confix2.py --packageroot=‘pwd‘/src --bootstrap --configure --make --targets=check

Not surprisingly, you should see the following output on your command line:

Welcome eteinik
OK, caught InvalidPersonData exception!
PASS: login_component_ServerMirror_test__check_application_Server
==================
All 1 tests passed
==================

The mirror component test concept handles the complete test setup for you, thus,
you can focus on your test cases only.
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5.9 Summary

In this chapter, a lot of different CCM Tools use cases have been shown. Each
use case satisfies a particular architectural requirement, but the main advantage of
CCM Tools comes from a combination of these use cases.

Figure 5.2: Combining different CCM Tools use cases.

Fig. 5.2 shows a possible scenario where different use cases are combined to realize a
heterogeneous and distributed software system. Based on CORBA middleware, we
can interact between C++ and Java remote components as well as between remote
components and Java client library components.

As component developers, we defined components in IDL and implement business
logic in generated implementation skeleton classes. Structural code needed to estab-
lish components which can be instantiated and connected via facts and receptacles,
either local or remote, is completely generated by the CCM Tools.



Appendix A

CCM Tools Commands

A.1 ccmconfix

NAME: ccmconfix - Confix input files generator.

SYNOPSIS: ccmconfix OPTIONS

DESCRIPTION: The ccmconfix generator can be used to generate Confix input
files. Confix needs a Makefile.py file in every source code directory (note that
Confix2 assumes Confix2.dir and Confix.pkg files instead of Makefile.py).

OPTIONS: The ccmtconfix generator handles the following options:

• -h,--help

Prints out a short description of the available command line parameters.

• -V, --version

Prints out the current version of installed CCM Tools.

• -o, --output <path>

Specifies the directory where the generation of Confix input files starts.
The generator writes these files in the specified output directory as well as
in every subdirectory (use the etc/ccmtools.properties file to define
a list of directories which will be ignored by the generator).

• -makefiles

Forces the generator to write Makefile.py files as used by Confix 1.x.

• -confix2

Forces the generator to write Confix2.dir and Confix.pkg files as used
by Confix 2.x.

• -pname, --packagename <name>

Forces the generator to write PACKAGE NAME() and PACKAGE VERSION()

definitions in the top–level Makefile.py (or the Confix2.pkg) file.
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• -pversion, --packageversion <version>

Specifies the used PACKAGE VERSION() number. By default, a “0.0.0”
string is used.

SEE ALSO: Confix Manual

A.2 ccmidl

NAME: ccmconfix - Start script for IDL generators.

SYNOPSIS: ccmidl OPTIONS FILES

DESCRIPTION: The ccmidl script is used to run all kinds of IDL generator
backends based on a given set of IDL input files.

OPTIONS: The ccmtconfix generator handles the following options:

• -h, --help

Prints out a short description of the available command line parameters.

• -V, --version

Prints out the current version of installed CCM Tools.

• -I <path>

Specifies a path that will be used from a preprocessor to find included
IDL files.

• -o, --output <path>

Specifies the directory where the generated IDL files are stored to.

• -idl3

Generates IDL3 source files for the IDL3 repository directory (for each
IDL3 artefact a separate source file will be generated).

• -idl3mirror

Generates IDL3 source files for a mirror component.

• -idl2

Generates equivalent IDL2 source files which can be used as input for a
regular IDL compiler.

FILES: CCM Tools start scripts can handle single IDL files or a list of IDL files.
The following examples show the usage of IDL files:

ccmidl -idl3 -o idl3Repo *.idl

ccmidl -idl3mirror -o idl3Repo Test.idl

ccmidl -idl2 -o corba_stubs Test.idl Helper.idl

SEE ALSO:
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A.3 ccmjava

NAME: ccmjava - Start script for Java generators.

SYNOPSIS: ccmidl OPTIONS FILES

DESCRIPTION: The ccmidl script is used to run all kinds of Java generator
backends based on a given set of IDL input files.

OPTIONS: The ccmtjava generator handles the following options:

• -h, --help

Print out a short description of the available command line parameters.

• -V, --version

Print out the current version of installed CCM Tools.

• -I <path>

Specify a path that will be used from a preprocessor to find included IDL
files.

• -o, --output <path>

Specify the directory where the generated IDL files are stored to.

• -iface

Generate local Java interface definitions from the given IDL files.

• -local

Generate local Java component logic implementations for the given IDL
files.

• -app

Generate buisness logic skeletons for the given IDL files.

• -remote

Generate remote Java component logic implementations for the given IDL
files.

• -clientlib

Generate local Java component proxies which are used to access remote
components via local Java interfaces.

FILES: CCM Tools start scripts can handle single IDL files or a list of IDL files.
The following examples show the usage of IDL files:

ccmjava -iface -o *.idl

ccmjava -iface -local -app -o src-gen Test.idl TestHome.idl

SEE ALSO:
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A.4 ccmtools

NAME: ccmtools - Frontend to start available CCM Tools generators.

SYNOPSIS: ccmtools TYPE [OPTIONS] FILES

DESCRIPTION: The ccmtools script is used to run a particular component
generator backend based on a set of IDL files. Depending on TYPE and OPTIONS

a particular code generator is selected to create the desired output.

TYPE: Currently, the following generator types are supported:

• c++local

Generates local C++ component logic.

• c++local-test

Generates a test client for a pair of local C++ component and mirror
component.

• c++dbc

Generates a set of Design by Contract adapters for a local C++ compo-
nent.

• c++remote

Generates a set of remote C++ adapters that establish a standard compli-
ant CORBA component where a local C++ component can be embedded.

• c++remote-test

Generates a test client for a pair of remote component and mirror com-
ponent.

• idl3

(!!! deprecated !!!)
Generates IDL3 source files.

• idl3mirror

(!!! deprecated !!!)
Generates IDL3 source files for a mirror component.

• idl2

(!!! deprecated !!!)
Generates equivalent IDL2 source files.

OPTIONS: In addition to the generator types, the ccmtools script handles the
following options:

• -a, --application

Forces the local C++ generator to create business logic implementation
skeletons (* impl.* files).
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• -h, --help

Prints out a short description of the available command line parameters.

• -Ipath

Specifies a path that will be handled from a preprocessor to find included
IDL files.

• -o DIR, --output=DIR

Specifies the directory where the generated code will be written.

• -V, --version

Prints out the current version of installed CCM Tools.

FILES: This ccmtools script can handle single IDL files or a list of IDL files. The
following examples show the usage of IDL files:

ccmtools c++local -a -o test Test.idl Helper.idl

ccmtools c++local-test -o test *.idl

ccmtools idl3mirror -o test/idl3mirror Test.idl

SEE ALSO: ccmidl

A.5 ccmtools-idl

NAME: ccmtools-idl - Run an IDL compiler to generate CORBA stub and skele-
tons.

SYNOPSIS: ccmtools-idl OPTION FILES

DESCRIPTION: The ccmtools-idl script is a IDL compiler wrapper for Mico
ORB and Java ORB, and hides the different call notations. This script also
allows to process more than one IDL file at the same time. Note that this
script assumes that both IDL compilers are installed correctly.

OPTION: The ccmtools-idl script supports of the following options:

• -h, --help

Prints out a short description of the available command line parameters.

• -Ipath

Specifies a path that will be handled from a preprocessor to find included
IDL files.

• --mico

Forces the use of Mico’s IDL compiler. Thus, the generated stub and
skeletons are implemented in C++.
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• --java

Forces the use of Java’s build in IDL compiler. Thus, the generated stub
and skeletons are implemented in Java. Note that Java’s IDL compiler
only supports CORBA 2.x but no CORBA 3.0 extensions like component,
home, etc.

• -V, --version

Prints out the current version of installed CCM Tools.

FILES: This ccmtools-idl script can handle single IDL files or a list of IDL files.
The following examples show the usage of IDL files:

ccmtools-idl --mico CarRental.idl

ccmtools-idl --java CarRental.idl Customer.idl

ccmtools-idl --mico *.idl

SEE ALSO: Mico manual, Java IDL documentation

A.6 uml2idl

NAME: uml2idl - Convert an UML XMI file into an IDL and an OCL file.

SYNOPSIS: uml2idl XMI-FILE PREFIX

DESCRIPTION: The uml2idl script runs a Java program that converts a UML
diagram stored in an XMI 1.1 file into corresponding IDL and OCL files. The
IDL file is created in respect to the UML Profile for CCM, while the OCL file
collects all OCL expressions defined in the UML diagram.

XMI-FILE: That’s the name of the input XMI 1.1 file which holds the UML
class diagram (e.g. when using MagicDraw 9.0, the file name looks like
Name.xml.zip).

PREFIX: The generated IDL and OCL files are named PREFIX.idl and PREFIX.ocl.

SEE ALSO: UML Profile for CORBA, UML Profile for CCM
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CCM Tools Installation

B.1 Prerequisites

To install the CCM Tools, the following programs must be available:

Java SDK ≥ 1.5.x (http://java.sun.com/j2se)

Apache Ant ≥ 1.6.x (http://ant.apache.org)

Python ≥ 2.4.x (http://python.org)

cpp ≥ 3.3.x (http://www.gnu.org)

To build the generated C++ components, we also need:

Confix ≥ 1.5.x (http://confix.sourceforge.net)

gcc ≥ 3.3.x (http://www.gnu.org)

mico ≥ 2.3.11 (http://www.mico.org/)

B.2 How to get it

The project is hosted at Sourceforge (http://ccmtools.sf.net). See the web site
for releases and announcements.
You can also subscribe to the ccmtools-announce mailing list for CCM Tools release
announcements. The ccmtools-users mailing list provides a forum for discussion
about using the CCM Tools.

B.3 Binary distribution

Installing the CCM Tools from a binary package is quite simple:
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$ tar xvzf ccmtools-x.y.z-bin.tar.gz

This package comes with the following structure:

ccmtools-x.y.z
|-- bin
|-- lib
‘-- templates

|-- CppLocalTemplates
|-- CppLocalTestTemplates
|-- CppRemoteTemplates
|-- CppRemoteTestTemplates
|-- IDL2Templates
|-- IDL3MirrorTemplates
‘-- IDL3Templates

Finally, you can set your environment variables:

$ export CCMTOOLS_HOME=<CCM_INSTALL_PATH>
$ export PATH=$CCMTOOLS_HOME/bin:$PATH

# Additionally, the following settings are needed for using remote
# components based on the Mico ORB
$ export CCM_NAME_SERVICE=corbaloc:iiop:1.2@localhost:5050/NameService
$ export CCM_COMPONENT_REPOSITORY=${CCMTOOLS_HOME}
$ export CCM_INSTALL=<MY_INSTALL_PATH>

Note that you also need a C++ runtime environment to compile and run the gen-
erated components. These C++ runtime packages must be installed from source.
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B.4 Source distribution

B.4.1 CCM Tools package:

Installing the CCM Tools from source requires the following steps:

$ tar xvzf ccmtools-x.y.z.tar.gz

Alternatively, you can check out an up-to-date version from CVS:

$ cvs -d :pserver:anonymous@ccmtools.cvs.sf.net:/cvsroot/ccmtools login
Password: <press enter>
$ cvs -d :pserver:anonymous@ccmtools.cvs.sf.net:/cvsroot/ccmtools co ccmtools

To build the CCM Tools we use Ant:

$ cd ccmtools
$ ant install -Dprefix=<CCM_INSTALL_PATH>

Don’t forget to set your environment variables properly (as described in the ’Binary
distribution’ section).

B.4.2 Java runtime package:

To access remote CCM components from Java clients, we have to install a Java
client’s runtime environment called java-environment:

$ tar xvzf java-environment-x.y.z.tar.gz

Alternatively, you can check out an up-to-date version from CVS:

$ cvs -d :pserver:anonymous@ccmtools.cvs.sf.net:/cvsroot/ccmtools \
co java-environment

To build and install the java-environment we use Ant:

$ cd java-environment
$ ant install -Dprefix=<CCM_INSTALL_PATH>

To used this runtime library from a Java client, don’t forget to set the CLASSPATH
variable:

$ export CLASSPATH=<CCM_INSTALL_PATH>/lib/Components.java:$CLASSPATH
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B.4.3 C++ runtime packages:

As shown in Fig. ??, to compile and run generated CCM components, we need a
C++ runtime environment.
To build and install C++ environment packages as well as generated C++ com-
ponents, we use Confix. Confix is a build tool that is based on automake and
autoconf - visit the confix.sf.net page to read the exhaustive manual.
It’s a good idea to create a CCM Tools profile in Confix’ configuration file (.confix),
as described in the Confix manual.

ccm_tools_profile = {
’PREFIX’: ’<MY_INSTALL_PATH>’, # use your own path!
’BUILDROOT’: ’<MY_BUILD_PATH>’, # use your own path!
’ADVANCED’: ’true’,
’USE_LIBTOOL’: ’true’,
’CONFIX’: {
},
’CONFIGURE’: {

’ENV’: {
’CC’: ’gcc’, # use your own path!
’CXX’: ’g++’, # use your own path!
’CFLAGS’: "-g -O0 -Wall",
’CXXFLAGS’: "-g -O0 -Wall",
},

’ARGS’: [
’--with-mico=<MICO_INSTALL_PATH>/lib/mico-setup.sh’

# use your own mico install path!
]

},
}

PROFILES = {
’ccmtools’: ccm_tools_profile,
’default’ : ccm_tools_profile

}

It’s important that you substitute your own paths in the .confix file.
We can configure the ccm tools profile as default profile, thus we don’t need
to use the --profile=ccmtools confix option. Additionally, we advise to set the
ADVANCED flag to true instead of using the --advanced command–line option.
To install the CCM Tools runtime packages, the following steps are needed:

$ tar xvjf wx-toolsbox-x.y.z.tar.bz2
$ cd wx-toolsbox-x.y.z
$ confix.py --bootstrap --configure --make --targets="install"
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$ tar xvjf wx-utils-x.y.z.tar.bz2
$ cd wx-utils-x.y.z
$ confix.py --bootstrap --configure --make --targets="install"

$ tar xvzf cpp-environment-A.B.X.tar.gz
$ cd cpp-environment
$ confix.py --packageroot=‘pwd‘/ccm --bootstrap --configure \

--make --targets="install"

Note that you can alternatively check out an up-to-date version of the cpp-environment
package from CVS:

$ cvs -d :pserver:anonymous@ccmtools.cvs.sf.net:/cvsroot/ccmtools \
co cpp-environment

Perfect, all tools and libraries have been installed and are ready to work!
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Appendix C

CORBA Component Model

Developing CORBA applications that make use of advanced features of the ORB
and rely on services such as security, notification, persistent state and transactions
requires a substantial development effort. The OMG addresses these problems by
introducing the concept of CORBA components.

C.1 CORBA Component definition

CCM Component Definition: A component is a basic meta–type in CORBA
3.0 and is denoted by a component reference. A component type is a spe-
cific, named collection of features that can be described by an IDL component
definition. A component type encapsulates its internal representation and
implementation.

Equivalent
Interface

Facet
Component

Home
CCM

CCM

Interface
Home

Attribute

Receptacle Event

Sink
Event

Source

Figure C.1: Pictorial representation of a CCM component that supports a Home and
an Equivalent interface as well as synchronous (facet, receptacle) and asynchronous
ports (event source, event sink).

CCM defines a component architecture and a container framework in which the com-
ponent life cycle takes place. In the CCM specification [8], the following component
types are defined:
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Service Components do not have any state. The lifetime of service components
is restricted to the lifetime of a single method call. A service component is
equivalent to a stateless EJB session bean.

Session Components have transient state. Typically, a session component will
have the lifetime of a client interaction. Session components are equivalent to
stateful EJB session beans.

Process Components have persistent state but no primary key. They are used
to model business processes, usually tasks with a well–defined lifetime.

Entity Components have persistent state and a primary key. They are used to
model persistent entities in a database that may have transactional behavior.
CCM defines two forms of persistence support:

• Container–managed Persistence (CMP): The component developer
simply defines the state that is to be made persistent and the container
automatically saves and restores state as required.

• Self–managed Persistence (SMP): The component developer assumes
the responsibility for saving and restoring state when requested to do so
by the container.

The external view of a CCM component (Fig. C.1) is defined by the following inter-
faces:

• Component Home Interface: describes an interface for managing instances
of a specific component type. The home interface may define Factory Methods
and Finder Methods to create and retrieve component instances. A home
definition can optionally have Supported Interfaces that means that the home
interface inherits from these interfaces.

• Component Equivalent Interface: is the component’s main interface. At-
tributes and Supported Interfaces are included in the equivalent interface as
well as navigation methods to access the component’s ports.

• Provided Interfaces: a component type may provide several implemented
interfaces to its clients in the form of Facets. Facets are intended to be the
primary vehicle through which a component exposes its functional application
behavior to clients during normal execution. Provided interfaces follow the
concept introduced by the Extension Interface pattern [9].

• Used Interfaces: a component definition can describe the ability to use ob-
ject references upon which the component may invoke operations. When a
component accepts an object reference in this manner, the relationship be-
tween the component and the referent object is called a connection. The
conceptional point of connection is called a Receptacle.
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In addition to the presented interfaces, CCM supports a publish/subscribe event
model. Event Sources hold references to consumer interfaces and invoke various
forms of push operations to send events. Component Event Sinks provide consumer
references, into which other entities push events. An Emitter can be connected to
at most one provider, while a Publisher can be connected to an arbitrary number of
consumers. The possible dependencies between these interfaces are defined in the
CCM Interface Repository Metamodel.

All interfaces of a CORBA component are described in the OMG Interface Defi-
nition Language (IDL) which is part of the CORBA 3.0 specification. The use of
IDL makes the component definition independent of programming languages. The
OMG has defined language mappings that describe the realization of IDL constructs
in a particular programming language.

To describe the structure and state of component implementations, the OMG defined
the Component Implementation Definition Language (CIDL) as a superset
of the Persistent State Definition Language. The Component Implementation
Framework (CIF) defines the programming model for constructing component im-
plementations. The CIF uses CIDL descriptions to generate programming skeletons
that automate many of the basic behaviors of components.

C.2 CORBA Component Container

The CCM architecture (Fig. C.2) is very similar to EJB. Components run in a CCM
Container that provides the runtime environment for CORBA components.

Client Application

Client Stubs CCM Container C
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k

CORBA
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Local CORBA Objects

CORBA Objects Context

Figure C.2: The CORBA Component Model (CCM) architecture.

Containers are built on top of the Object Request Broker (ORB), the Portable Object
Adapter (POA) and CORBA services and define three forms of interfaces:

• Internal Interfaces are local CORBA interfaces that provide container func-
tions to the CORBA component. Internal interfaces are used by the compo-
nent developer and provided by the container.

• Callback Interfaces are local CORBA interfaces that are invoked by the
container and implemented by a CORBA component.
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• External Interfaces are remote CORBA interfaces that describes the con-
tract between the component developer and the component client. External
interfaces are used by the client and implemented by the component developer.
All remote calls are made on the container’s implementation of external inter-
faces and delegated to local CORBA objects that implement the component’s
functionality (Interceptor pattern).

When a component instance is instantiated in a container, it is passed a reference to
its context, a local CORBA interface used to invoke services. This CCMContext
serves as a bootstrap and provides accessors to the other internal interfaces including
access to the runtime services implemented by the container.

The CORBA component model defines container mechanisms and services that man-
ages components at runtime:

• Instance Pooling. The life cycle of service components, the component is
activated on every operation request, forces the concept of instance pooling to
reduce the costs of instance creating and destroying.

• Life Cycle Management. To manage the component’s lifecyle a container
invokes callback methods depending on the container type. To handle all
component types, CCM supports two kinds of container APIs, the session
container API and the entity container API.

• Concurrency. CORBA components support two threading models, serialize
and multithread. A threading policy of serialize means that the component im-
plementation is not thread safe and the container will prevent multiple threads
from entering the component simultaneously. A threading policy of multi-
thread means that the component is capable of mediating access to its state
without container assistance and multiple threads will be allowed to enter the
component simultaneously. Threading policy is specified in CIDL.

• Transactions. CORBA components may support either self–managed trans-
actions (SMT) or container–managed transactions (CMT). A component using
SMT is responsible for transaction demarcation via CORBA Transaction Ser-
vice or the container’s UserTransaction interface. A CMT component defines
transaction policies in the associated component descriptor.

• Security. The container relies on CORBA security to consume the security
policy declarations from the deployment descriptor and to check the active
credentials for invoking operations. Access permissions are defined by the
deployment descriptor associated with the component.
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C.3 Component packaging and deployment

After implementation, a Packaging and Deployment process must be defined. A
package, in general, consists of one or more XML descriptors and a set of files. The
descriptors describe the characteristics of the package and point to its various files:

• Software Package Descriptor. This descriptor consists of general infor-
mation about the software followed by one or more sections describing imple-
mentations of that software. The descriptor file has a .csd (CORBA Software
Descriptor) extension.

• Component Descriptor. The CORBA Component descriptor specifies com-
ponent characteristics, used at design and deployment time. A component
descriptor file has a recommended .ccd (CORBA Component Descriptor) ex-
tension.

• Property File Descriptor. The property file is used at deployment time to
configure a home or component instance. A configurator uses the property file
to determine how to set component and component home property attributes.
The property file descriptors have a .cpf (Component Property File) extension.

C.4 Component assembly

The CCM deployment architecture, defines Assemblies build up of existing CCM
components. A component assembly archive file contains a set of component archive
files and a component assembly descriptor:

• Component Assembly Descriptor. A component assembly descriptor con-
sists of elements describing the components used in the assembly, connection
information, and partitioning information. It is a template for instantiating a
set of components and introducing them to each other. Component descriptors
have a .cad (Component Assembly Descriptor) extension.

The CCM assembly concept allows the creation of assemblies only at deployment
time. At runtime, a single component can not connect itself to another component.
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Figure C.3: Component assembly

C.5 Light Weight CORBA Component Model

Many of today’s embedded CORBA applications are unable to use the available
enterprise CCM due to design constraints. These constraints include small code
size in embedded environments and limited processing overhead for performance
conservative applications.

To overcome this problem, LwCCM was submitted to the OMG [11]. The purpose
of this profile is to specify a lightweight version of the CCM. The principal aim
of LwCCM is to have a component model sufficient to compose applications with
CORBA components without all optional features that are not part of the “core”
capabilities of CCM. The choices made in the profile follow rules established to suit
embedded environments:

• Redundancy. If several ways of requesting a service exist, only one is re-
tained.

• Interoperability and Compatibility with full CCM. During deployment,
a leightweight component should be deployable by a full CCM deployment
application. Connections between a leightweight component and a full CCM
component must be possible. Implementations of leightweight components
should be source compatible with the full CCM.

• Persistence. The LwCCM does not need to manage any kind of persistence
as described in the CCM specification.

• Transactions. Transactions are not a feature commonly used in embedded
systems thus they are not included in the LwCCM profile.

• Security. Security will not be treated in the LwCCM profile.
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• Introspection. Not all introspection operations are retained in this profile
because they are not essential to perform the deployment of components.

• EJB Integration. There is no integration of Enterprise JavaBeans defined in
LwCCM because EJB are not required for embedded targeted environments.

• Deployment and Configuration. Instead of the Packaging and Deployment
chapter of CCM, LwCCM is based on the OMG Deployment and Configuration
specification [6]. This includes also the definitions of component and assembly
descriptor files and their XML DTDs.

• CCM Implementation Framework. The whole Component Implementa-
tion Definition Language (CIDL) chapter as well as the CCM Implementation
Framework (CIF) chapter are excluded from the LwCCM profile.

The CIDL is redundent with IDL definitions because all functional descriptions
of the component (facets, reseptacles, events and attributes) is done with the
IDL files. The way to assign a component category (service or session) to a
component can be done via an XML description file that will be used with the
IDL files to generate container code and skeletons.

This profile tries to be as compliant as possible to the OMG Minimum CORBA
and Lightweight Services specifications [5, 7].
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